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Abstract

We compare an inverse problem approach to parameter estimation with homogenization techniques for
characterizing the electrical response of composite dielectric materials in the time domain. We first consider
an homogenization method, based on the periodic unfolding method, to identify the dielectric response of a
complex material with heterogeneous micro-structures which are described by spatially periodic parameters.
We also consider electromagnetic interrogation problems for complex materials assuming multiple polariza-
tion mechanisms with distributions of parameters. An inverse problem formulation is devised to determine
effective polarization parameters specific to the interrogation problem. We compare the results of these
two approaches with the classical Maxwell-Garnett mixing model and a simplified model with a weighted
average of parameters. Numerical results are presented for a specific example involving a mixture of ethanol
and water (modeled with multiple Debye mechanisms). A comparison between each approach is made in
the frequency domain (e.g., Cole-Cole diagrams), as well as in the time domain (e.g., plots of susceptibility
kernels).
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1 Introduction

In this paper, we consider composite materials that are mixtures of linear, isotropic and temporally
dispersive dielectrics. Composite materials are often used in industry as they have better prop-
erties (e.g., electrical, structural) as compared with their constituents. The dielectric properties
of mixtures can differ significantly from the individual materials from which they are composed.
We compare three different time-domain approaches to characterizing the electrical response of
composite dielectrics. We also consider the approach of using the weighted average of the model
parameters from each of the constituent materials.

First we consider an homogenization method to identify the dielectric response of a material
presenting heterogeneous micro-structures which are described by spatially periodic parameters.
When such composite materials are subjected to electromagnetic fields generated by currents of
varying frequencies, and the period of the structure is small compared to the wavelength, the
spatially dependent coefficients in Maxwell’s equations oscillate rapidly. These spatially oscillating
coefficients are difficult to treat numerically in simulations. In the process of homogenization
the rapidly oscillating coefficients are replaced with new, effective constant (in space) coefficients.
The primary objective of homogenization is to replace a system with periodically varying spatial
coefficients by a limiting homogeneous system that facilitates computation. The approach that
we take here is based on the periodic unfolding method (and its application to homogenization of
Maxwell’s equations) as presented in [1, 6, 8].

In a second method we consider a parameter estimation problem which, rather than producing a
limiting system with effective coefficients, chooses effective coefficients for a simplified system that
best matches the desired output from a specific problem formulation. In particular, we assume
an interrogation problem with a given source signal and known geometry. The data to be fit in a
least squares sense is a simulation of the complex material using a model involving a distribution
of polarization mechanisms as described in [4].

We compare the homogenization and parameter identification technique with results obtained
using the Maxwell-Garnett mixing model [15] of a two-phase mixture wherein the inclusions are
embedded in a matrix material in the form of spheres (in 3D) or circular disks (in 2D) [14]. We
also compare the various techniques mentioned above to a single polarization model which uses
the weighted average of the dielectric parameters of the two different constituents of the composite
material.

The outline of this paper is as follows. In Section 2, we describe Maxwell’s equations and
corresponding constitutive relations which govern the evolution of the electromagnetic field in a
temporally dispersive media. This is the framework for the various techniques mentioned above.

In Section 3 we present an outline of an homogenization approach, based on the periodic un-
folding method, for calculating effective parameters of composite media. Using this approach we
can calculate the high frequency permittivity of the composite dielectric as well as a susceptibility
function for discrete time values. In this manner we obtain only time-domain data. However, for
ease of comparison with frequency domain homogenization methods, we can calculate the complex
permittivity of the mixture by performing a discrete Fourier transformation of the susceptibility
function data.

In Section 4 we introduce the parameter estimation method based on an inverse problem formu-



3

lation. Given data, and a proposed model for simulating an approximation to the data, the inverse
problem formulation allows one to determine the model parameters which best match the data in
the least squares sense. In the case where the proposed model uses a single polarization mechanism
with scalar parameters, the inverse problem method produces effective model parameters similar to
an homogenization method. However, the approach is sufficiently general to return a distribution of
parameters and/or mechanisms (see [4]). Furthermore, this parameter estimation method is capa-
ble of using either simulated or real data in the inverse problem. The method makes no assumption
on the geometry of the mixture, rather it assumes a perfectly homogeneous composite. However,
as this approach does use information about the interrogating fields, unlike the homogenization
methods, it can be tailored to specific nondestructive evaluation (NDE) applications with narrow
frequency bands.

The Maxwell-Garnett mixing model presented in Section 5 is also an homogenization type
method, but in order to distinguish it from the method described in Section 3, we will refer to
it only as a mixing rule. It can be used to calculate an effective complex permittivity of the
composite in the frequency domain as well as the susceptibility function values in the time domain.
In the Maxwell-Garnett model, it is assumed that one of the components of the mixture exists as
spherical (3D) or circular (2D) inclusions inside a background material (ellipsoidal inclusions can
also be considered). The homogenization method assumes that the composite has a periodic micro-
structure where one of the components in the mixture exists as inclusions of a certain geometry
inside a background matrix made up of the other component of the mixture. However, unlike the
Maxwell-Garnett rule, the geometry of the micro-structure is not limited to circular or spherical
geometry. For a proper comparison, in this paper we do assume a circular geometry for the
micro-structure. For both the homogenization method based on periodic unfolding as well as the
Maxwell-Garnett model, knowledge of the volume proportions of the components of the mixture is
needed in order to calculate effective parameters of this composite dielectric.

In Section 6, we present comparisons of these three techniques, along with a simple model in-
volving the weighted average of the dielectric parameters from each constituent material. Time
domain comparisons include plots of the susceptibility function, while the frequency domain com-
parisons involve various plots of the complex permittivity. Finally, we conclude with a summary of
results and a discussion of the advantages and disadvantages of the different techniques in Section
8.

2 Maxwell’s Equations in a Dispersive Medium

We employ Maxwell’s equations for a linear and isotropic medium in a form that includes terms
for the electric polarization given by




∂D
∂t

−∇×H = J in (0, T )× Ω,

∂B
∂t

+∇×E = 0 in (0, T )× Ω,

E× n = 0 on (0, T )× ∂Ω,

E(0,x) = 0, H(0,x) = 0 in Ω,

(1)
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along with zero Gauss divergence laws (∇·D = 0,∇·B = 0 in (0, T )×Ω). Here Ω ⊂ Rn, n = 1, 2, 3.
The vector valued functions E and H represent the strengths of the electric and magnetic fields,
respectively, while D and B are the electric and magnetic flux densities, respectively. The source
current density is given by J. We assume that there are no free electric charges unaccounted for
in the electric polarization. We use perfectly conducting boundary conditions on the boundary
∂Ω, with unit outward normal n and also assign zero initial conditions for all the unknown fields.
System (1) is completed by constitutive laws that embody the behavior of the material in response
to the electromagnetic fields. These are given in (0, T )× Ω in the form




D(t,x) = ε0εr(x)E(t,x) + P(t,x),

B(t,x) = µ0H(t,x),
(2)

where ε0, and µ0 are the permittivity and the permeability of free space, respectively, εr is the
relative permittivity of the medium under investigation and P is the media’s macroscopic electric
polarization. For the media that is of interest to us, we have neglected magnetic effects and we have
assumed zero conductivity. To describe the behavior of the media’s macroscopic electric polarization
P, we employ a general integral representation model in which the polarization explicitly depends
on the past history of the electric field. This convolution model is sufficiently general to include
microscopic polarization mechanisms such as dipole or orientational polarization as well as ionic
and electronic polarization and other frequency dependent polarization mechanisms. The resulting
constitutive law can be given in terms of a susceptibility kernel g, also known as the dielectric
response function (DRF), by

P(t,x) = g ? E(t,x) =
∫ t

0
g(t− s,x)E(s,x) ds. (3)

2.1 The Debye Model of Orientational Polarization

The constitutive law (2)–(3) is sufficiently general to include models based on differential equa-
tions and systems of differential equations or delay differential equations whose solutions can be
expressed through fundamental solutions (in general variation-of-parameters representations)–see
[3] for details. A number of known polarization laws can be readily treated. The choice of the
kernel function

g(t,x) =
ε0(εs(t,x)− ε∞(t,x))

τ(t,x)
e−t/τ(t,x), (t,x) ∈ (0, T )× Ω (4)

in the dielectric corresponds to the differential equation of the Debye Model for orientational or
dipolar polarization given by

τ(t,x)Pt(t,x) + P(t,x) = ε0(εs(t,x)− ε∞(t,x))E(t,x), (5)

D(t,x) = ε0ε∞(t,x)E(t,x) + P(t,x). (6)

Here εs is the static relative permittivity. The presence of instantaneous polarization is accounted
for in this case by the coefficient εr = ε∞ in the electric flux equation. The remainder of the
electric polarization is seen to be a decaying exponential with relaxation parameter τ , driven by
the electric field, less the part included in the instantaneous polarization. This model was first
proposed by Debye [10] to model the behavior of materials that possess permanent dipole moments.
The magnitude of the polarization term P represents the degree of alignment of these individual
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moments. The choice of coefficients in (5) gives a physical interpretation to εs and ε∞ as the relative
permittivities of the medium in the limit of the static field and very high frequencies, respectively.
In the static case, we have Pt = 0, so that P = ε0(εs − ε∞)E and D = εsε0E. For very high
frequencies, τPt dominates P so that P ≈ 0 and D = ε∞ε0E.

3 Homogenization Model in Two Dimensions

We assume that our problem possesses uniformity in the spatial direction x2, so that all derivatives
with respect to x2 are assumed to be zero. In this case Maxwell’s equations decouple into two
different modes, the transverse electric (TE) and transverse magnetic (TM) modes. Here, we
are interested in the TE mode for which the electric field has two nontrivial components, E =
(Ex1 , Ex3)

T , and one nontrivial component H = Hx2 of the magnetic field. Similarly, the flux
densities are D = (Dx1 , Dx3)

T , and B = Bx2 . The system then reduces to vectors depending on
two variables, x1 and x3.

Let Ω now be a subset of R2 with x = (x1, x3) ∈ R2. Let us define the vector of fields

u = (uT
1 , u2)T = (ET ,H)T ∈ W 1,1(0, T ;H1(Ω;R3)), (7)

and the operator

Lu(t,x) =

(
D(t,x)

B(t,x)

)
, (8)

which from (2)-(3) can be written as

LTEu(t,x) = ATE(x)u(t,x) +
∫ t

0
CTE(t− s,x)u(s,x) ds. (9)

The two 3× 3 coefficient matrices in (9) are defined as

ATE =

[
ATE

11 0

02 µ0

]
; CTE =

[
CTE

11 0

02 0

]
, (10)

with

ATE
11 (x) =

[
ε0εr(x) 0

0 ε0εr(x)

]
; CTE

11 (t,x) =

[
g(t,x) 0

0 g(t,x)

]
, (11)

where in the above definitions 02 is the 2 × 2 matrix of zeros. Next, we define the Maxwell curl
operator MTE as

MTEu(t,x) = MTE

(
E(t,x)

H(t,x)

)
, (12)

where the operator MTE can be expressed as the matrix operator



0 0 −∂x3

0 0 ∂x1

∂x3 −∂x1 0


 . (13)
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Thus Maxwell’s equation can be rewritten in the form



(i)
d

dt
LTEu = MTEu + J in (0, T )× Ω,

(ii) u(0,x) = 0 in Ω,

(iii) u1(t,x)× n(x) = 0 on (0, T )× ∂Ω,

(14)

where LTE is the operator associated with the constitutive law (9), and MTE is the Maxwell
operator (12).

We assume that the structure that occupies the domain Ω entails periodic micro-structures
leading to matrices ATE,BTE and CTE with spatially oscillatory coefficients. Specifically, we will
assume that εr and g are rapidly oscillating spatial functions.
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Figure 1: Periodic composite material presenting a circular micro-structure with periodicity α. The
figure shows α decreasing from left to right.

3.1 The Homogenized Solution

The outline presented in this section is based on results from [1, 6]. We denote by Y α the reference
cell of the periodic structure that occupies Ω ⊂ R2 (see Figure 1). Let x,y ∈ R2 with x = (x1, x3)
and y = (y1, y3). We will use x ∈ R2 for points on the macro scale, and y ∈ R2 for points on the
micro scale (reference cell). Since we assume uniformity in the x2-direction, we may have as before
all derivatives with respect to x2 (or y2 in the micro-scale) zero. In this case the homogenized
solution u = (Ex1 , Ex3 ,Hx2)

T for the TE mode appears in a formal asymptotic expansion, or
two-scale expansion (see [1]), given using a corrector term ū(t,x,y) by

Eα
x1

= Ex1 + ∂y1 ū(t,x,y) + . . . , (15a)

Eα
x3

= Ex3 + ∂y3 ū(t,x,y) + . . . , (15b)

Hα
x2

= Hx2 , (15c)

where the electromagnetic field uα = (Eα
x1

, Eα
x3

,Hα
x2

)T is the solution to an evolution problem of
type (14) on a domain Ω with a micro-structure of periodicity α. Hence the homogenized electric
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field solution for the TE mode appears in the formal expansion

Eα = E +∇yū(t,x,y) + . . . . (16)

Since we are assuming uniformity in the x2 direction, there is no correction of the magnetic field
solution.

The solution of the first corrector term ū ∈ W 2,1(0, T ; H1
per(Y ;R)), from the two scale ex-

pansion, depends on the calculation of two corrector sub-terms w̄A
k ∈ H1

per(Y ;R) and w̄k ∈
W 1,1(0, T ; H1

per(Y ;R)), which are solutions to the corrector equations




(i)
∫

Y
ATE

11 (y)∇yw̄A
k (y) · ∇yv̄(y) dy = −

∫

Y
ATE

11 (y)ek · ∇yv̄(y) dy,

(ii)
∫

Y
ATE

11 (y)∇yw̄k(t,y) · ∇yv̄(y)dy

+
∫

Y

∫ t

0
CTE

11 (t− s,y)∇yw̄k(s,y) ds · ∇yv̄(y)dy

= −
∫

Y
CTE

11 (t,y)
{
ek +∇yw̄A

k (y)
} · ∇yv̄(y) dy,

(17)

for all v̄ ∈ H1
per(Y ), k = 1, 2. The vectors ek, k = 1, 2 are the basis vectors in R2 with e1 = (1, 0)T ,

e2 = (0, 1)T . The gradient operator in this case is ∇y = (∂y1 , ∂y3)
T . The first corrector term ū can

now be calculated as

ū(t,x,y) = w̄A(y)E(t,x) +
∫ t

0
w̄(t− s,y)E(s,x) ds, (18)

where w̄A ∈ R1×2 with components {w̄A
k }2

k=1. Similarly w̄ ∈ R1×2 with components {w̄k}2
k=1.

Once we have solved for these corrector terms, we can then construct the homogenized matrices
from




(i) (ATE
11 )k =

∫

Y
ATE

11 (y)
{
ek +∇yw̄A

k (y)
}

dy,

(ii) (CTE
11 )k(t) =

∫

Y
CTE

11 (t,y)
{
ek +∇yw̄A

k (y)
}

dy +
∫

Y
ATE

11 (y)∇yw̄k(t,y) dy

+
∫

Y

∫ t

0
CTE

11 (t− s,y)∇yw̄k(s,y) ds dy,

(19)

where, (ATE
11 )k and (CTE

11 )k are the kth columns of the 2 × 2 matrices ATE
11 and CTE

11 , respectively,
and the homogenized matrices are given by

ATE =

[ATE
11 0

0 µ0

]
, CTE =

[CTE
11 0

0 0

]
. (20)

The corresponding system of equations in the TE mode are



(i)
d

dt
LTEu = MTEu + JTE

s in (0, T )× Ω,

(ii) u(0,x) = 0 in Ω,

(iii) u1(t,x)× n(x) = 0 on (0, T )× ∂Ω,

(21)
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where u = (Ex1 , Ex3 ,Hx2)
T , n = (nx1 , nx3)

T is the unit outward normal vector to ∂Ω, and the
operator LTE is defined as

LTEu(t,x) = ATEu(t,x) +
∫ t

0
CTE(t− s)u(s,x) ds. (22)

If the initial conditions are nonzero, additional corrector terms and corrector equations are involved,
and then there is a supplementary source term J 0 that should be introduced in the right side of
(21,i). See [6] for more details.

3.2 Numerical Discretization for the Cell Problem

The spatial discretization of the cell problem can be done using piecewise bilinear finite elements.
For the time discretization we use an approach that involves calculating the convolution recursively.
Since the susceptibility kernel g(t,x) is exponential in nature for many materials of interest, we
can use recursion to compute the discretized time convolution of the susceptibility kernel with the
gradient of the corrector terms in the corrector subproblem (17,ii) and the construction (19,ii). The
discrete gradient of the corrector term is assumed to be constant on each equally spaced interval
of time ∆t. The details of the method summarized here may be found in [1]. A similar approach
known as the recursive convolution (RC) method has been used to compute the discrete convolution
terms that appear in Maxwell’s equations [12, 13]. We show in [1] that the discrete convolution of
all previous field values of the gradient of the corrector terms and the discrete susceptibility function
can be reduced to recursive updating of a single vector on each element in the finite element mesh;
this involves a matrix vector multiplication at each time step.

For the numerical experiments in this paper we obtain the effective high frequency permittivity
as well as time plots of the effective susceptibility kernels for various dielectric mixtures. We do
so by solving specific cell problems in the reference cell Y = [0, 1] × [0, 1]. The simulations are
performed on a 51 × 51 nodes finite element grid. In the numerical solution for the homogenized
model we have approximated circular micro-structures in a staircase fashion. For details see [1].
The results of several experiments will be presented in Section 6.

4 Parameter Estimation

We next formulate an inverse problem for the determination of parameters for a model which de-
scribes the dielectric response of complex materials in the context of electromagnetic interrogation.
It is well known that, in general, dielectrics are most accurately modeled by a distribution of pa-
rameters [7], although using a distribution of parameters in practice is sometimes computationally
intensive. Thus there is a need to determine single, effective parameters. The comparison of several
ways to do this is the precisely the subject of this paper.

In [4] it was shown that the inverse problem for the actual distribution is well posed. In fact,
distributions of mechanisms (e.g., mixtures of Debye and Lorentz materials) could also be handled
in the same framework. Using this theory as a foundation, we consider the inverse problem wherein
parameters for a simplified model are estimated. The most simplified case of a single mechanism
involving a delta distribution of the parameter set results in the determination of effective model pa-
rameters as produced in homogenization techniques. However, unlike homogenization methods, the
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inverse problem formulation has the flexibility to use either real data or simulated data obtained by
using a suitable forward solve. Further, as the electromagnetic interrogation of an object generally
involves a relatively narrow range of frequencies, the inverse problem based parameter estimation
is designed to essentially match the dielectric response of the material in the frequency band of
interest. This is unlike homogenization methods which do not take the interrogating frequency into
account.

4.1 Distributions of Mechanisms and Parameters

As before, we consider the electric field E and the magnetic field H to be governed by Maxwell’s
equations in a domain D = Ω0 ∪ Ω where Ω contains the dielectric and the ambient Ω0 is treated
as a vacuum. (See Figure 2 for a schematic of a sample domain.)
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Figure 2: Snapshot of a simulation of a truncated sine wave partially reflecting from and partially
penetrating a sample material. The z-axis represents a sample 1D domain.

Our main focus in this section is the dielectric polarization P which we assume has the general
convolution form given in (3). In every practical example (Debye, Lorentz, etc.) DRF’s are para-
meter dependent as well as time (and possibly space) dependent; we represent this as g = g(t,x; ν),
where typically ν contains parameters such as the high frequency limit dielectric permittivity ε∞,
the static permittivity εs, and relaxation time τ . An example of an often-used DRF is the De-
bye model (described in Section 2.1). Allowing for a distribution F of parameters ν over some
admissible set N , we generalize the polarization law (3) to

P(t,x; F ) = g ? E(t,x) =
∫ t

0

∫

N
g(t− s,x; ν)E(s,x)dF (ν)ds. (23)

We expect to chose F from (or from a subset of) the space F = P(N ) of all probability measures F
on N . We could further generalize (23) to allow for dielectric materials with multiple mechanisms
or multiple DRF’s (i.e., heterogeneous molecular structures) by considering a family of possible
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DRF’s and distributions over this family as described in [4]. For now we will restrict our efforts to
single mechanisms.

4.2 Inverse Problem Formulation

In [4] the focus was to determine the parameters of distributions in an inverse problem formulation
in order to accurately describe the electrical response of complex materials. In this effort we
attempt to find a single set of effective parameters that “best” describe this response for a specific
interrogating source. In other words, we are attempting to find the distribution F in the subset
of F = P(N ) which corresponds to all single delta distributions, even though the data may (and
does!) come from simulations involving more than just a single parameter set.

Formally, we consider the Maxwell system (1)–(2) with polarization P = P(t,x; F ) given by
(3). Let

z(t,x;F ) =
(

E(t,x;F )
H(t,x; F )

)
,

with (t,x) → z(t,x;F ) mapping from (0, T ) × Ω to R6. We assume we are given data d̄ =
{di}n

i=1 corresponding to observations of CAz(ti, · ; F ). Here CA denotes evaluation of one or more
components of E or H at an antenna {xA}. We use this data to estimate the parameter distribution
F in an ordinary least squares (OLS) formulation, seeking to minimize

J(F ) =
n∑

i=1

|CAz(ti, · ; F )− di|2, (24)

over some subspace the space F = P(N ) of all probability measures F on N .

For this particular effort, we are concerned with comparing the inverse problem based parameter
estimation method to other methods of determining effective parameters. Thus, while the synthetic
data is generated using the general formulation of the polarization law (23), the forward solves in
the inverse problem will be limited to a single polarization mechanism with a single parameter set
ν, namely, equation (3).

4.3 Numerical Results

As our inverse problem approach does not depend on the inclusion geometry, we may consider a
1-D example as explained in detail in [5]. Restricting to one dimension, and using D = εE + P , we
can write Maxwell’s equations in second order form as

µ0εË + µ0IΩP̈ − E′′ = −µ0J̇s in Ω ∪ Ω0 = [0, b], (25)

where E is the k̂ or z component of the electric field, and ε = ε0(1 + IΩ(ε∞ − 1)). Here, IΩ

denotes the indicator function on the dielectric medium Ω. The (now scalar) polarization is still
determined by equation (3), however with the vector valued electric field E replaced by the scalar
E. We assume zero initial conditions for E and P ,

P (0, z) = E(0, z) = Ė(0, z) = 0.
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Lastly, we have absorbing boundary conditions at z = 0 and reflecting conditions at z = b, namely
[
Ė − cE′

]
z=0

= 0

E(t, b) = 0,
(26)

where c2 = 1
ε0µ0

.

The numerical method employed involves a linear Finite Element Method for spatial discretiza-
tion, and a centered difference for the temporal discretization. For details, see [2].

We choose to consider a mixture of two Debye materials, for which the parameter identification
procedure will attempt to find parameters for a single Debye model such that the resulting simu-
lations best match, in a least squares sense, the data generated from the mixture. The substance
that is being interrogated is a mixture of water and ethanol with volume fractions of 80%− 20%,
50%− 50%, and 20%− 80%. For water, we used the following parameters in a Debye polarization
model: τ1 = 1.01 × 10−11, εs,1 = 80.1, and ε∞,1 = 4.9. The Debye parameters for ethanol are
τ2 = 1.2× 10−10, εs,2 = 25.1, and ε∞,2 = 4.4.

We assume the interrogating signal to be a single cycle truncated sine curve with carrier fre-
quency 109 Hz. Note that this frequency is below the weighted average relaxation frequency
f = 1/τ̃ , with τ̃ = ατ1 + (1 − α)τ2 (here α is the volume fraction of water), and therefore we
expect that the optimal single relaxation time should be close to this average value [4]. Further, for
simplicity of computations, we take the value of ε∞ in the single Debye model to be the weighted
average of mixture, namely ε∞,eff = αε∞,1 + (1− α)ε∞,2. This results in a two parameter inverse
problem for τ and εs. The interrogating source and the signal receiver are both located at z = 0
(see Figure 2). For this test problem, the cost functional is

J(τ, εs) =
n∑

i=1

|E(ti, 0; τ, εs)− di|2. (27)

A surface plot of each of the cost functionals J is displayed in Figures 3-5 for the volume
fractions of 80% − 20%, 50% − 50%, and 20% − 80%, respectively. The left plot of each figure
depicts the range of values between the parameters for ethanol and the parameters for water. The
right plot of each figure shows a closer view of the objective function near the optimal solution.
The initial starting point used in the optimization method is marked with an “O”. This value is
simply the weighted average of τ and εs over the material. The resulting optimum value from the
optimization method is marked with an “X”.

Note that in the 80%− 20% case there is a large positive peak centered at εs = 60. We do not
have to resort to taking the absolute value of the electric field to avoid this obstacle to minimization,
as described in [4], since our starting point for the optimization method is closer to the minimum
than this peak. For the 20%−80% case there is a local minimum near εs = 53. Fortunately, for these
particular parameters, the initial solution is close enough to the global minimum to not converge
to the local minimum. It is important to note however, that for other choices of parameters,
convergence to the incorrect minimum is a very real concern.

For the optimization method, we use a Levenberg-Marquardt method with implicit filtering. As
the cost functional is significantly more sensitive to the εs direction than the τ direction, taking a
Newton step in both directions at the same time generally results in an increased value of the cost
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Figure 3: The left plot depicts the objective function for the parameter identification problem
versus the log of τ and εs using a volume fraction of 80%− 20% water to ethanol. The right plot
presents a closer view of the objective function, with the initial value marked with an “O” and the
optimal value marked with an “X”.

function. Rather than increasing the Levenberg-Marquardt parameter immediately (i.e., performing
a pull-back on the line-search which results in a shorter step), we test the possibility that taking just
one of the directions will give an actual reduction in the objective function. The addition of these
two function evaluations, when the cost is not decreased by the original step, saved approximately
70% of the pull-backs on line-searches versus the traditional Levenberg-Marquardt method, and
led to faster convergence. Table 1 contains the initial values of log(τ), εs and J , as well as the
optimized values for each case of differing volume fractions (where α is the percentage of water).

Table 1: Initial values and values resulting from Levenberg-Marquardt optimization of the water-
ethanol mixture using the volume fractions of 80%−20%, 50%−50%, and 20%−80% interrogated
at f = 109 Hz.

α = .8 log(τ) εs J

Initial -10.7807 69.1 0.350694
Optimal -10.7933 67.5529 0.0122314
α = .5 log(τ) εs J

Initial -10.4582 52.6 2.48618
Optimal -10.5759 48.2837 0.182077
α = .2 log(τ) εs J

Initial -10.1358 36.1 2.92976
Optimal -10.418 30.1762 1.54837

To see the improvement in the fit-to-data of the optimal value response over that of the weighted
average in matching the multiple Debye signal, we plot in Figures 6-8 the resulting simulations and
the original data computed using a discrete distribution of two Debye models, for each of the three
volume fractions. The inset shows a closer view of the full signal reflected from the back boundary
(the only useful information in determining the electrical response in an experiment).
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Figure 4: The left plot depicts the objective function for the parameter identification problem
versus the log of τ and εs using a volume fraction of 50%− 50% water to ethanol. The right plot
presents a closer view of the objective function, with the initial value marked with an “O” and the
optimal value marked with an “X”.

It is clear from each of the figures that the weighted average parameters do not result in signals
that match the double Debye data. For the cases 80%−20% and 50%−50%, the optimal parameters
produce a signal that is very similar to the data, although still distinguishable. However, even for
these simple examples it is apparent that no single Debye model can produce a simulation exactly
matching the double Debye model. In fact, this conclusion is even more obvious in the 20%− 80%
case. The optimization method returns this solution as optimum, and the parameter values can be
visually verified by referring to the surface plot 5, but clearly the single Debye simulation does not
match the multiple Debye in amplitude nor phase. Still, when an approximate result is sufficient
and the savings in computational time important, then the optimal parameters from an inverse
problem formulation provide an alternative to modeling a complex material using distributions of
parameters and mechanisms.

5 The Maxwell Garnett Model

We will compare the homogenization method and the parameter identification technique presented
above to the Maxwell-Garnett (MG) model of a two-phase mixture wherein the inclusions are
embedded in the environment in the form of spheres (in 3D) or circular disks (in 2D). As in the
case of the other techniques, we assume that both the temporally dispersive materials are isotropic,
homogeneous and non-magnetic.

A direct time-domain approach that has been developed in [14] expresses the effective permit-
tivity of a mixture as an operator form MG expression that includes the susceptibility kernels and
high frequency responses of the component materials. The evaluation of the effective permittivity
operator requires the calculation of convolutions and operator inverses. The inverse of the convolu-
tion operators encountered in these problems can be solved from Volterra equations of the second
kind, which have unique and well behaved solutions. The advantage of the time-domain formulation
is that the results are more intuitive physically than those in the frequency domain. When both
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Figure 5: The left plot depicts the objective function for the parameter identification problem
versus the log of τ and εs using a volume fraction of 20%− 80% water to ethanol. The right plot
presents a closer view of the objective function, with the initial value marked with an “O” and the
optimal value marked with an “X”.
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Figure 6: Comparison of multiple Debye data to the forward simulation using the weighted average
Debye parameter values and the forward simulation using optimal values from the single Debye
inverse problem using a volume fraction of 80%− 20%.

constituent materials are dispersive, the dispersion of the mixture is in general more complicated
than that of the inclusion. Even for the simplest case of Debye inclusions in a Debye background,
the effective complex permittivity is neither of Debye nor of Lorentz form, but contains higher
powers of the frequency ω in both the numerator and the denominator.

For the examples of an 80% water and 20% alcohol mixture, and a 20%−80% mixture, explicit
expressions for the effective susceptibility kernel are given in Sec 5.B.3 of [14]. The analysis in
[14] is restricted to the case of spherical (circular in 2D) inclusions. The homogenization technique
presented in Section 3, however, does not have this restriction.
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Figure 7: Comparison of multiple Debye data to the forward simulation using the weighted average
Debye parameter values and the forward simulation using optimal values from the single Debye
inverse problem using a volume fraction of 50%− 50%.

0 5 10 15 20 25 30
−200

−150

−100

−50

0

50

100

150

200

t (ns)

el
ec

tr
ic

 fi
el

d 
(v

ol
ts

/m
et

er
)

 

 

10 15 20 25
−10

−5

0

5

10

Multiple Debye
Weighted average
Inverse problem

Figure 8: Comparison of multiple Debye data to the forward simulation using the weighted average
Debye parameter values and the forward simulation using optimal values from the single Debye
inverse problem using a volume fraction of 20%− 80%.

6 Comparison of Methods

We compare the time domain and frequency domain results of each of the methods described above.
For the time domain, we plot the DRF used in the convolution definition of the polarization from
equation 3. While the homogenization method used here directly produces a dielectric response
function defined at specified time points, the inverse problem approach is designed to simply output
a single parameter set for use in a Debye polarization model formulation. To compare the two
methods in the time domain we may use the fact that the Debye model DRF is given by (4).
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In order to examine the differences in the frequency domain we must compare the resulting
complex permittivity. For the Debye polarization model, the (relative) complex permittivity is
given by

ε(ω) = ε∞ +
εs − ε∞
1 + iωτ

.

However, the homogenization approach used here does not output a complex permittivity directly.
One may take the DFT of the DRF to get the permittivity. This presents some computation
issues when attempting to plot the permittivity for the entire range of frequencies of interest.
Therefore, plots involving the homogenization method are incomplete in some places, and care
must be taken in interpreting the results. See Section 7 for a discussion on the convergence of the
permittivity curves as the discretization parameters are reduced. In general, the homogenization
results tend to match those of the classical Maxwell-Garnett mixing formula. A more efficient
approach for frequency domain comparison would be to compute the effective permittivity from
the homogenization method within a frequency domain formulation, as described in [6]. However,
the main purpose of this effort is time domain comparisons, therefore we only present the frequency
domain results to emphasize the difference between the methods. Plots of the real and imaginary
parts of the complex permittivity are plotted in the following subsections.

An additional depiction of the complex permittivity is the Cole-Cole diagram. Cole and Cole
[9] proposed an empirical function for use in fitting dielectric data. The Debye model presented
in Section 2.1 is a special case of this Cole-Cole model. The Cole-Cole function (including Debye)
leads to a distinctive semicircular plot in the complex permittivity plane. As the frequency is
varied, a plot of the imaginary part of the complex permittivity versus the real part describes a
circular arc [11] which among other names is called the Cole-Cole diagram.

6.1 80%− 20% Volume Fraction

The left plot of Figure 9 depicts the DRF’s for the inverse problem result, the solution from the
homogenization approach, as well as the curves for a Debye model of pure water and for pure
ethanol. In the right plot of Figure 9 we compare the DRF from the inverse problem and homog-
enization approaches to the MG mixing rule result and the DRF obtained by using the weighted
average of values in the Debye model (4). The inverse problem DRF is nearly indistinguishable
from that of the weighted averages; however, the difference between the corresponding outputs
from the interrogation simulations was clearly seen in Figure 6.

The real and imaginary parts of the permittivity resulting from the homogenization approach
and the inverse problem approach, are plotted in Figure 10, along with the values for pure water and
pure ethanol. Both methods have curves that lie between those of the water and ethanol, although
more closely aligned with water. However the main difference is that the homogenization approach
has a peak in the imaginary part of the permittivity very close to the relaxation frequency of water,
whereas the inverse problem formulation seems to have a peak close to the weighted average of
relaxation frequencies.

In Figure 11 the real and imaginary parts of the permittivity from the homogenization approach
and the inverse problem approach are compared to the values resulting from taking the weighted
average of parameters and the Maxwell-Garnett mixing method.

The peaks in the plots of the imaginary parts denote the frequency at which the maximum
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Figure 9: The left side presents a plot of the DRF resulting from the homogenization approach and
the inverse problem approach, using a volume fraction of 80%− 20%, along with the plots for the
Debye model of water and ethanol. The right side depicts the same for the homogenization and
inverse problem approaches, along with the DRF’s computed using the Maxwell-Garnett mixing
formula and a weighted average. The DRF of the weighted average approach and the inverse
problem method are nearly indistinguishable.
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Figure 10: The left (right) graph depicts the real (negative imaginary) part of the permittivity
resulting from the homogenized DRF and the inverse problem approach using a volume fraction of
80%− 20%, along with the values for pure water and pure ethanol.

attenuation of the field in the material occurs, (in the Debye case it is known as the relaxation
frequency). Note that both the Maxwell-Garnett and the homogenization methods have peaks very
close to that of water. Both the parameter estimation method and the approach using weighted
average of parameters result in peaks very close to the weighted average of the relaxation frequencies
of water and ethanol.
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Figure 11: The left (right) graph presents the real (negative imaginary) part of the permittivity
resulting from the homogenized DRF and the inverse problem approach, along with the values
computed using a weighted average and the Maxwell-Garnett mixing formula, using a volume
fraction of 80%− 20%.
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Figure 12: The left plot depicts the Cole-Cole diagram of the complex permittivity resulting from
the homogenization approach and the inverse problem approach, along with the values from the
Debye model for water and ethanol using a volume fraction of 80%− 20%. The right plot presents
the same for the homogenization and inverse problem approaches, along with the values computed
using the Maxwell-Garnett mixing formula and a weighted average.

The Cole-Cole diagrams corresponding to the complex permittivities shown in Figures 10 and
11 are shown in the left and right plots of Figure 12.

The Cole-Cole diagram for a Debye model is a semi-circle and the peaks correspond to the
relaxation frequency. As both the weighted average values and the inverse problem approach
use the Debye model, their diagrams are semi-circles. Both the Maxwell-Garnett rule and the
homogenization method have more complex Cole-Cole diagrams as evidenced by the bend in the
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curves. This discrepancy from the Debye model is more pronounced at the lower frequencies for
this volume fraction.

6.2 50%− 50% Volume Fraction

The left plot of Figure 13 depicts the DRF’s for the inverse problem result, the solution from
the homogenization approach, as well as the curves for a Debye model of pure water and for
pure ethanol. In the right plot of Figure 13 we compare the DRF from the inverse problem and
homogenization approaches to the MG mixing rule result and the DRF obtained by using the
weighted average of values in the Debye model. The inverse problem DRF is very similar to that
of the weighted averages; however, the difference between the corresponding outputs from the
interrogation simulations was clearly seen in Figure 7.
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Figure 13: The left side presents a plot of the DRF resulting from the homogenization approach
and the inverse problem approach, along with the plots for the Debye model of water and ethanol,
using a volume fraction of 50%− 50%. The right side depicts the same for the homogenization and
inverse problem approaches, along with the DRF’s computed using the Maxwell-Garnett mixing
formula and a weighted average. The DRF of the weighted average approach and the inverse
problem method are nearly indistinguishable.

The real and imaginary parts of the permittivity resulting from the homogenization approach
and the inverse problem approach, are plotted in Figure 14, along with the values for pure water and
pure ethanol. In Figure 15 the real and imaginary parts of the permittivity from the homogenization
approach and the inverse problem approach are compared to the values resulting from taking the
weighted average of parameters and the Maxwell-Garnett mixing method.

The peaks in the plots of the imaginary parts denote the frequency at which the maximum
attenuation of the field in the material occurs, (in the Debye case it is known as the relaxation
frequency). Note that both the Maxwell-Garnett and the homogenization methods still have peaks
relatively close to that of water, as compared to ethanol, considering that it is a 50%−50% mixture.
Both the parameter estimation method and the approach using weighted average of parameters
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Figure 14: The left (right) graph depicts the real (negative imaginary) part of the permittivity
resulting from the homogenized DRF and the inverse problem approach, using a volume fraction
of 50%− 50%, along with the values for pure water and pure ethanol.
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Figure 15: The left (right) graph presents the real (negative imaginary) part of the permittivity
resulting from the homogenized DRF and the inverse problem approach, along with the values
computed using a weighted average and the Maxwell-Garnett mixing formula, using a volume
fraction of 50%− 50%.

result in peaks very close to the average of the relaxation frequencies of water and ethanol.

The Cole-Cole diagrams corresponding to the complex permittivities shown in Figures 14 and
15 are shown in the left and right plots of Figure 16. As both the weighted average values and
the inverse problem approach use the Debye model, their diagrams are again semi-circles. The
Maxwell-Garnett rule and the homogenization method are again more complicated, and have an
even more pronounced bend in the curve than the 80% − 20% case. The frequency at which is
occurs is also closer to the peak frequency than the previous case.
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Figure 16: The left plot depicts the Cole-Cole diagram of the complex permittivity resulting from
the homogenization approach and the inverse problem approach, along with the values from the
Debye model for water and ethanol, using a volume fraction of 50%− 50%. The right plot presents
the same for the homogenization and inverse problem approaches, along with the values computed
using the Maxwell-Garnett mixing formula and a weighted average.

6.3 20%− 80% Volume Fraction

The left plot of Figure 17 depicts the DRF’s for the inverse problem result, the solution from
the homogenization approach, as well as the curves for a Debye model of pure water and for
pure ethanol. In the right plot of Figure 17 we compare the DRF from the inverse problem and
homogenization approaches to the MG mixing rule result and the DRF obtained by using the
weighted average of values in the Debye model. The inverse problem DRF is very similar to that
of the weighted averages; however, the difference between the corresponding outputs from the
interrogation simulations was clearly seen in Figure 8.

The real and imaginary parts of the permittivity resulting from the homogenization approach
and the inverse problem approach, are plotted in Figure 18, along with the values for pure water and
pure ethanol. In Figure 19 the real and imaginary parts of the permittivity from the homogenization
approach and the inverse problem approach are compared to the values resulting from taking the
weighted average of parameters and the Maxwell-Garnett mixing method.

The peaks in the plots of the imaginary parts denote the frequency at which the maximum
attenuation of the field in the material occurs, (in the Debye case it is known as the relaxation
frequency). Note that both the Maxwell-Garnett and the homogenization methods still have peaks
relatively close to that of water, as compared to ethanol, considering that it is a 20%−80% mixture.
Both the parameter estimation method and the approach using weighted average of parameters
result in peaks very close to the average of the relaxation frequencies of water and ethanol.

The Cole-Cole diagrams corresponding to the complex permittivities shown in Figures 18 and
19 are shown in the left and right plots of Figure 20. As both the weighted average values and
the inverse problem approach use the Debye model, their diagrams are again semi-circles. The
Maxwell-Garnett rule and the homogenization method are again more complicated, and have an
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Figure 17: The left side presents a plot of the DRF resulting from the homogenization approach
and the inverse problem approach, along with the plots for the Debye model of water and ethanol,
using a volume fraction of 20%− 80%. The right side depicts the same for the homogenization and
inverse problem approaches, along with the DRF’s computed using the Maxwell-Garnett mixing
formula and a weighted average. The DRF of the weighted average approach and the inverse
problem method are nearly indistinguishable.
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Figure 18: The left (right) graph depicts the real (negative imaginary) part of the permittivity
resulting from the homogenized DRF and the inverse problem approach, using a volume fraction
of 20%− 80%, along with the values for pure water and pure ethanol.

even more pronounced bend in the curve than the 80% − 20% case. The frequency at which is
occurs is also closer to the peak frequency than the previous case.
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Figure 19: The left (right) graph presents the real (negative imaginary) part of the permittivity
resulting from the homogenized DRF and the inverse problem approach, along with the values
computed using a weighted average and the Maxwell-Garnett mixing formula, using a volume
fraction of 20%− 80%.
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Figure 20: The left plot depicts the Cole-Cole diagram of the complex permittivity resulting from
the homogenization approach and the inverse problem approach, along with the values from the
Debye model for water and ethanol, using a volume fraction of 20%− 80%. The right plot presents
the same for the homogenization and inverse problem approaches, along with the values computed
using the Maxwell-Garnett mixing formula and a weighted average.

7 Convergence of DFT for Homogenization DRF

In order to display the complex permittivity resulting from the DRF computed with the homoge-
nization approach, one must take the DFT of the DRF at many time points. Further, in order for
the maximum frequency component to be large enough to display useful information, the time step
must be very small. For example, in order to compute the complex permittivity up to f = 5× 1012
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Hz (where the real part of the permittivity converges to ε∞), the time step for calculating the DRF
in the homogenization method must be 10−13 seconds. Further, for sufficient resolution down to
f = 108 Hz (where the real part of the permittivity converges to εs), the number of time steps
must be greater than 20000. In our numerical experiments, each time step takes on the order of .1
seconds, as a linear system for the finite element method must be solved. The following subsections
show computations of the DFT for various DRF’s computed with successively smaller time steps.

7.1 80%− 20% Volume Fraction

We compute the homogenized DRF for the volume fraction 80% − 20% water-ethanol using time
steps dt = {10−14, 10−13, 10−12}. The resulting curves are shown in the left plot of Figure 21. The
convergence in the time domain is quickly apparent, however, many more steps would be required
for full convergence of the frequency domain results, as seen in the right plot which contains the
Cole-Cole diagram for each time step. The real and imaginary parts of the permittivity resulting
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Figure 21: The left side presents a plot of the DRF resulting from the homogenization approach
using time steps dt = {10−14, 10−13, 10−12}. for the case of an 80%− 20% volume fraction of water
and ethanol. The right plot depicts the Cole-Cole diagram of the complex permittivity resulting
from the homogenization approach for each time step. The incompleteness is due to lack of sufficient
time steps. 105 steps are shown.

from the homogenization approach using time steps dt = {10−14, 10−13, 10−12} are plotted in Figure
22. The high frequency part of the curves are complete and appear to be converging to a limiting
effective complex permittivity.

7.2 20%− 80% Volume Fraction

For the case of a volume fraction of 20%− 80% water-ethanol we use the time steps dt = {10−16,
10−14, 10−13}. The resulting curves are shown in the left plot of Figure 23. Although fewer time
steps were computed in the dt = 10−16 case, clear agreement in the time domain is reached with
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Figure 22: The left (right) graph depicts the real (negative imaginary) part of the permittivity
resulting from the DFT of the homogenized DRF, using a volume fraction of 80%−20%, computed
with time steps dt = {10−14, 10−13, 10−12}.

only dt = 10−14. The right plot of Figure 23 depicts the Cole-Cole diagram for each time step. All
three resolutions agree at the higher frequencies (the left side of the plot), which is where the effect
of the composite material is most obvious. The overlapping circles is characteristic of mixtures of
Debye substances, and the diagrams here agree nicely with the classical Maxwell-Garnett mixing
rule shown in Figure 20. The real and imaginary parts of the permittivity resulting from the
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Figure 23: The left side presents a plot of the DRF resulting from the homogenization approach
using time steps dt = {10−16, 10−14, 10−13}. for the case of an 20%− 80% volume fraction of water
and ethanol. The right plot depicts the Cole-Cole diagram of the complex permittivity resulting
from the homogenization approach for each time step. The inaccuracies due to the incompleteness
of the time domain DRF are clearly apparent.

homogenization approach using time steps dt = {10−16, 10−14, 10−13}, are plotted in Figure 24.
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The high frequency part of the curves appear to coincide better than for the 80% − 20% case,
however the lower frequencies are not sufficiently resolved to be able to estimate the effective static
permittivity εs.
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Figure 24: The left (right) graph depicts the real (negative imaginary) part of the permittivity
resulting from the DFT of the homogenized DRF, using a volume fraction of 20%−80%, computed
with time steps dt = {10−16, 10−14, 10−13}.

8 Conclusions

The Maxwell-Garnett mixing rule is only valid for spherical or circular inclusions (ellipsoidal inclu-
sions can also be considered). The periodic unfolding homogenization method allows for any two or
three dimensional geometry. It is important to note, however, that the results of all homogenization
techniques (including MG) are valid when the size of the inclusion are small in comparison with
the wave length of the sources and fields. For higher frequencies scattering effects are no longer
negligible. A second advantage of the homogenization method presented here is the flexibility it
affords in assumptions about material polarization laws. In this paper we have computed the DRF
for a Debye-Debye mixture using a recursive convolution method. The recursive convolution ap-
proach can be extended to the cases of mixtures involving Lorentz or higher order dispersive media
in which the DRF is exponential in nature.

A mixture of materials, which may each be described by the same simple model, in general
will not be accurately described by that same model. For example, a Debye-Debye mixture has
an effective complex permittivity which is not of Debye form, nor even of Lorentz form. The
homogenization methods described here attempt to capture this complexity. However, for certain
applications it is not necessary to have a high level of accuracy for those frequencies which do not
appear in the problem, especially if the added complexity necessary for increased accuracy is cost-
prohibitive. For example, in a simulation with an interrogating signal of narrow frequency band,
the complex permittivity need only be accurate in those frequencies. Using an inverse problem
formulation designed around the specific fields of interest can give a cost-effective method for
modeling complex materials with relatively simple formulas.
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As mentioned earlier, for both the homogenization method based on periodic unfolding as well
as the Maxwell-Garnett model, knowledge of the volume proportions of the components of the
mixture is needed in order to calculate effective parameters of this composite dielectric. However,
the parameter estimation method is capable of using experimental data in the inverse problem, in
which case there would be no assumptions needed on the volume fraction or dielectric parameters
except perhaps in formulating a sufficiently accurate initial value for faster convergence of the
optimization routine. In generating synthetic data however, one must of course have the volume
proportions, as well as dielectric parameters for each material, including possibly distributions of
parameters. While there is a large initial investment in computational time to perform the many
forward solves needed to determine the optimal parameter set, having effective parameters for a
simplified model which closely matches the data of interest may lead to significant savings in later
simulations such as in geometric inverse problems involving crack or flaw detection. One of the
biggest advantages to using the inverse problem parameter estimation approach is that it may be
tailored to specific applications with narrow frequency bands such as those that often occur in the
fields of non-destructive evaluation (NDE) or remote sensing.
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